## 1100. Aza-steroids. Part X.* 4-Aza-3-oxo-A-homo-5 $\alpha$-cholest-1-ene

By C. W. Shoppee, Ruth Lack, R. N. Mirrington, and L. R. Smith
$5 \alpha$-Cholest-1-en-3-one oxime, m. p. $148-150^{\circ}$, obtained by recrystallisation from methanol, is the anti-isomer (III) and does not undergo the Beckmann rearrangement with thionyl chloride at $20^{\circ}$. The syn-component (I) of mixtures of the isomeric oximes, by Beckmann change with thionyl chloride at $20^{\circ}$ gives the $\varepsilon$-lactam (II) in good yield.

A spectroscopic method, originated by Slomp and Wechter, ${ }^{1}$ and used by Mazur, ${ }^{2}$ Shoppee, Lack, and Newman, ${ }^{3}$ and Shoppee, Akhtar, and Lack, ${ }^{4}$ permits distinction between the anti- and syn-isomers of oximes of $\alpha \beta$-unsaturated cyclohexenones by examination of the chemical shift of the vinyl proton caused by the proximity of the hydroxyl group in the syn-isomer (e.g., I).

(I)


(III)
$5 \alpha$-Cholest-1-en- 3 -one, ${ }^{5,6}$ by oximation in refluxing methanol, furnishes a crude crystalline product whose n.m.r. spectrum shows it to contain about $16 \%$ of the syn-oxime (I)

* Part IX, C. W. Shoppee and L. N. Mander, J., 1965, 1971.
${ }^{1}$ G. Slomp and W. J. Wechter, Chem. and Ind., 1962, 41.
${ }_{2}$ R. H. Mazur, J. Org. Chem., 1963, 28, 248.
${ }^{3}$ C. W. Shoppee, R. E. Lack, and B. C. Newman, J., 1964, 3388.
${ }^{4}$ C. W. Shoppee, M. I. Akhtar, and R. E. Lack, J., 1964, 3392.
5 A. Butenandt, L. Mamoli, H. Dannenberg, L. W. Masch, and J. Paland, Ber., 1939, 72, 1617.
${ }^{6}$ C. Djerassi and C. R. Scholz, J. Amer. Chem. Soc., 1947, 69, 2404.
and about $84 \%$ of the anti-oxime (III). Recrystallisation from methanol gives almost pure anti-oxime (III), m. p. $149-150^{\circ},{ }^{7}$ characterised as the acetate. The n.m.r. spectrum exhibits a doublet for one proton ( $\mathrm{H}-1$ ) centred at $\tau 3.58$ ( $J_{1,2}=10 \mathrm{c}$./sec.), a doublet for one proton (H-2) centred at $\tau 4.00\left(J_{2,1}=10 \mathrm{c} . / \mathrm{sec}\right.$.), and signals of total intensity corresponding to two protons ( $\mathrm{H}-4 \alpha, \mathrm{H}-4 \beta$ ) between $\tau 6 \cdot 9$ and $7 \cdot 5$. Recrystallisation of the oximation product from methyl cyanide gives a mixture of the isomeric oximes, m. p. $133-135^{\circ}$, containing $\sim 10 \%$ of the syn-oxime (I) and $\sim 90 \%$ of the anti-oxime (III); in the n.m.r. spectrum the signal for the single proton (H-2) in (I) now appears as an ill-defined doublet centred at $\tau 3 \cdot 44$, overlapping the signal for the proton (H-1) in (I) and (III) at $\tau 3 \cdot 58$, whilst signals corresponding approximately to two protons (H-4 $\alpha$, $\mathrm{H}-4 \beta$ ) in (I) and (III) occur between $\tau 6.9$ and $7 \cdot 4$. The signal for the hydroxylic proton is under the 4 -methylene envelope since deuteration causes no apparent change in the spectrum; a new signal for the hydroxylic proton at $\tau 9.03$ appears when the spectrum is taken at $80^{\circ}$. Examination of a Dreiding model of the anti-oxime (III) indicates some deshielding of both 4 -protons by the oxygen atom of the oximino-group. The oxime mixture, m. p. $133-135^{\circ}$, was thermostable since the n.m.r. spectrum after melting and resolidification was completely unchanged.

Nuclear magnetic resonance data ( $\tau$ units)

|  | 1-H | $2-\mathrm{H}$ | $J_{1,2}$ (c./sec.) | $\mathrm{C}-18 \mathrm{Me}$ | $\mathrm{C}-19 \mathrm{Me}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \alpha$-Cholest-1-en-3-one | $2 \cdot 89$ | $4 \cdot 15$ | $10 \cdot 0$ | $9 \cdot 31$ | 8.98 |
| syn-Oxime (I).. | $3 \cdot 58$ | $3 \cdot 44$ |  | - |  |
| anti-Oxime (III) | 3.58 | $4 \cdot 0$ | $10 \cdot 0$ | $9 \cdot 32$ | $9 \cdot 13$ |
| anti-Oxime acetate | $3 \cdot 32$ | $3 \cdot 82$ | $10 \cdot 4$ | $9 \cdot 33$ | 9-12 |

The anti-oxime (III) does not undergo the Beckmann rearrangement. The nearly pure anti-oxime ( $90 \%$ anti: $10 \%$ syn), by treatment with thionyl chloride at $20^{\circ}$, gave $83 \%$ of recovered anti-oxime, whose infrared spectrum was identical with that of the starting material. The pure anti-oxime similarly gave $78 \%$ of recovered anti-oxime, accompanied by $18 \%$ of $5 \alpha$-cholest-1-en-3-one formed by hydrolysis during brief treatment of the reaction mixture with 4 N -potassium hydroxide at $80^{\circ}$, and a trace of a substance, m . p. $\mathbf{2 5 0 - 2 5 2}{ }^{\circ}$, whose infrared spectrum was identical with that of $5 \alpha$-cholest-1-en- 3 -one and which is possibly a dimer; no trace of the $\varepsilon$-lactam (II) could be detected.

The mother-liquors from the methanol recrystallisation of the anti-oxime yielded a mixture of the isomeric oximes, estimated by n.m.r. spectrometry to contain $\sim 23 \%$ of the syn-oxime (I), which underwent Beckmann change with thionyl chloride at $20^{\circ}$ to give $73 \%$ [based on (I)] of the $\varepsilon$-lactam (II), $\nu_{\text {max. }} 3585,1660,1605 \mathrm{~cm} .^{-1}, \lambda_{\max } 219 \mathrm{~m} \mu$, by transinterchange. The 4 -aza- 3 -oxo- $\Delta^{1}$-structure (II) is confirmed by the ultraviolet absorption maximum at $219 \mathrm{~m} \mu$, which may be compared with that at $220 \mathrm{~m} \mu$ observed for 3 -aza4 -oxo-A-homoandrost- $4 \alpha$-ene, ${ }^{8}$ and that at $222 \mathrm{~m} \mu$ observed for 3 -aza- 3 -oxo-A-homocholest$4 \alpha$-ene. ${ }^{9}$

## Experimental

Melting points were determined on a Kofler hot-stage apparatus. Ultraviolet spectra (in ethanol) and infrared spectra (in carbon tetrachloride), unless otherwise stated, were measured with Perkin-Elmer 4000 A and 221 spectrophotometers, respectively. N.m.r. spectra were measured on a Varian A60 instrument with deuterochloroform as solvent and tetramethylsilane as internal reference. Chromatography was on silica gel (Davison 40-200 mesh) or aluminium oxide (Spence type H, activity II).
$5 \alpha$-Cholest-1-en-3-one.-Prepared by dehydrobromination of $2 \alpha$-bromo- $5 \alpha$-cholestan- 3 -one with calcium carbonate in refluxing dimethylacetamide, ${ }^{10}$ the ketone had m. p. $100-10 \mathbf{1}^{\circ}$, $\lambda_{\text {max }} 230 \mathrm{~m} \mu, \nu_{\text {max. }} 1680,785 \mathrm{~cm} .^{-1}$; n.m.r. spectrum $\tau 2.87$ (doublet, $J_{1,2}=10 \mathrm{c} . / \mathrm{sec} . ; \mathrm{H}-1$ ), $\tau 4 \cdot 15$ (doublet, $J_{2,1}=10 \mathrm{c} . / \mathrm{sec}$.; $\mathrm{H}-2$ ), $\tau 7 \cdot 5-7 \cdot 85(\mathrm{H}-4 \alpha, \mathrm{H}-4 \beta)$.
${ }^{7}$ S. K. Roy, Ph.D. Thesis, Sydney, 1961.
${ }^{8}$ C. W. Shoppee and G. Krüger, J., 1961, 3641.
${ }^{9}$ C. W. Shoppee, G. Krüger, and R. N. Mirrington, J., 1962, 1050.
${ }^{10}$ G. F. H. Green and A. G. Long, $J$., 1961, 2532.
$5 \alpha$-Cholest-1-en-3-one Oxime (III).- $5 \alpha$-Cholest-1-en-3-one was oximated with hydroxylamine hydrochloride and sodium acetate trihydrate in refluxing methanol for 1 hr ., and the product isolated in the usual way. Recrystallisation from methanol gave the anti-oxime, m. p. $149-150^{\circ}, \nu_{\max } 3270-3230 \mathrm{~cm} .^{-1}$, no absorption in the range $1800-1650 \mathrm{~cm} .^{-1}$, $\nu_{\max }$ (in Nujol) $3300,1610,980,960,940,775,760,725 \mathrm{~cm} .^{-1}$ [Found (after drying at $60^{\circ} / 0 \cdot 1 \mathrm{~mm}$. for 4 hr .): C, $81 \cdot 0 ; \mathrm{H}, 11.35 . \mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}$ requires $\mathrm{C}, 81.15 ; \mathrm{H}, 11.35 \%$; the acetate, prepared using acetic anhydride-pyridine at $20^{\circ}$ overnight, had m. p. $150-152^{\circ}$, $\nu_{\max .}$ (in Nujol) 1750 $\mathrm{cm} .^{-1}$, no absorption at $3500-3000 \mathrm{~cm} .^{-1}$, after recrystallisation from acetone [Found (after drying at $60^{\circ} / 0.1 \mathrm{~mm}$. for 4 hr .) : C, $78.85 ; \mathrm{H}, 10.75 . \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}_{2}$ requires $\left.\mathrm{C}, 78.5 ; \mathrm{H}, 10.75 \%\right]$. The crystalline material obtained by concentration of the methanol mother-liquor was a mixture ( $\sim \mathbf{7 7} \%$ anti, $\sim \mathbf{2 3} \%$ syn) of the isomeric oximes. Recrystallisation from methyl cyanide gave a mixture ( $\sim 90 \%$ anti, $\sim 10 \%$ syn ) of the isomeric oximes, m. p. $133-135^{\circ}$, $v_{\max } 3270$ $3230 \mathrm{~cm} .^{-1}$, with no selective absorption in the range $1800-1650 \mathrm{~cm} .^{-1}$.

4-Aza-3-oxo-A-homocholest-1-ene (II).-(a) The nearly pure anti-oxime ( $90 \% \mathrm{III}, 10 \%$ I), m. p. $133-135^{\circ}\left(120 \mathrm{mg}\right.$.), was dissolved in thionyl chloride ( 2 ml .), and after $1-2 \mathrm{~min}$. at $20^{\circ}$ the yellow solution was added slowly to 4 N -potassium hydroxide ( 25 ml .) , at $70^{\circ}$. The mixture was cooled immediately and extracted with chloroform ( $3 \times 15 \mathrm{ml}$.). After the usual working up, the resultant oil was chromatographed on alumina ( 5 g .) in hexane. Elution with etherhexane ( $\mathbf{1}: 1$ ) and with ether yielded a colourless oil which slowly crystallised to give unchanged oxime ( 100 mg .) whose infrared spectrum was identical with that of the starting material.
(b) $5 \alpha$-Cholest-1-en-3-one anti-oxime (III), m. p. $148-150^{\circ}$ ( 450 mg .), was added to thionyl chloride ( 5 ml .) at $10^{\circ}$ during 10 min ., and the mixture allowed to stand for a further 10 min . before being poured into 4 N -potassium hydroxide ( 50 ml .) at $80^{\circ}$. The suspension was cooled at once and extracted with chloroform, to give a product ( 435 mg .). This ( 300 mg .) was chromatographed on alumina ( 9 g .) in pentane. Elution with ether-pentane ( $1: 1$ ) ( $4 \times 50 \mathrm{ml}$.) gave $5 \alpha$-cholest-1-en-3-one ( 52 mg .), m. p. $100^{\circ}$, identified by mixed m. p., thin-layer chromatography on alumina in chloroform ( $R_{F} 0.8$ ), and the infrared spectrum. Elution with ether gave unchanged anti-oxime ( 232 mg .), m. p. 148 - $149^{\circ}$ (from methanol), identified by mixed m. p., thin-layer chromatography ( $R_{\mathrm{F}} 0 \cdot 27$ ), and the infrared spectrum. Elution with chloroform gave a substance ( 13 mg .), m. p. $250-252^{\circ}$, whose infrared spectrum appeared to be identical with that of $5 \alpha$-cholest-1-en-3-one, and which is possibly a dimer; no trace of 4 -aza-3-oxo-A-homocholest-1-ene (II) could be detected. When the anti-oxime, m. p. 148-150 ( 153 mg .), was added to 4 N -potassium hydroxide ( 30 ml .) at $80^{\circ}$, the cooled suspension by extraction with ether gave a product shown by thin-layer chromatography on alumina in chloroform to consist of anti-oxime ( $R_{F} 0 \cdot 27$ ) and $5 \alpha$-cholest-1-en-3-one ( $R_{F} 0 \cdot 8$ ).
(c) The mixed oximes ( $23 \% \mathrm{I}, 77 \%$ III) ( 538 mg .) were added to thionyl chloride ( 7 ml .) at $10^{\circ}$ during 20 min .; the mixture was then poured into 4 N -potassium hydroxide ( 50 ml .), at $80^{\circ}$, and the cooled suspension extracted with chloroform. The product ( 498 mg .) was chromatographed on alumina ( 45 g .), in hexane, and 138 fractions were collected. Elution with ether-hexane ( $1: 1$ ) ( $7 \times 20 \mathrm{ml}$.) gave a semi-solid ( 15 mg .), which appeared to be a mixture of anti-oxime (III) and $\varepsilon$-lactam (II) from its infrared spectrum, $v_{\max }$ (in Nujol) 3330, 975, 955, $940,775 \mathrm{~cm} .^{-1}$ (anti-oxime), 1695, 1500, 1265, 1110, 1065, 1030, 745, $705 \mathrm{~cm} .^{-1}$ ( $\varepsilon$-lactam), but giving a positive Beilstein test. No material was eluted with ether, but use of chloroformether ( $1: 5$ ) ( $18 \times 20 \mathrm{ml}$.) gave unchanged anti-oxime ( 89 mg. ), m. p. and mixed m. p. 148 $150^{\circ}$ (from methanol). Elution with chloroform-ether ( $1: 1$ ) ( $5 \times 20 \mathrm{ml}$.) and chloroform ( $5 \times 20 \mathrm{ml}$.) gave only oils (probably impure oxime), but further use of chloroform ( $10 \times$ 20 ml .) gave 4-aza-3-oxo-A-homo-5 $\alpha$-cholest-1-ene ( 90 mg .), double m. p. 253-255 ${ }^{\circ}$ and 276 $278^{\circ}$ (decomp.), $\lambda_{\text {max. }} 219 \mathrm{~m} \mu(\log \varepsilon 2 \cdot 9], v_{\max .}\left(\right.$ in $\left.\mathrm{CHCl}_{3}\right) 3585(\mathrm{NH}), 1600(\mathrm{CO} \cdot \mathrm{NH}), 1605 \mathrm{~cm} .^{-1}$ ( $\mathrm{C}=\mathrm{C}$ ), $\nu_{\text {max }}$ (in Nujol) $1700,1650,1600,1260,1110,1065,1030,740 \mathrm{~cm} .^{-1}$, after recrystallisation from methanol [Found (after drying at $100^{\circ} / 0 \cdot 1 \mathrm{~mm}$. for 2 hr .) : $\mathrm{C}, 80 \cdot 9 ; \mathrm{H}, 11 \cdot 1 . \mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}$ requires $\mathrm{C}, 81 \cdot 15 ; \mathrm{H}, 11 \cdot 35 \%$ ].

Department of Organic Chemistry, The University of Sydney, Sydney, Australia.
[Received, February 8th, 1965.]

